This is an example setup of a machine that should run GPU computing for BIIGLE. It is based on a clean install of Ubuntu 18.04 with the user ubuntu
and an NVIDIA GPU.
-
Run
sudo apt update && sudo apt upgrade
. -
Install the GPU drivers (adapted from the TensorFlow instructions):
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb $ sudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.deb $ rm cuda-repo-ubuntu1804_10.0.130-1_amd64.deb $ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub $ sudo apt-get update $ sudo apt-get install -y --no-install-recommends cuda-drivers
-
Reboot the machine to activate the driver.
-
Install Docker. If you are in a cloud environment, add the respository like this so it is not deleted when a new machine is booted:
echo "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list
-
Install nvidia-docker2 (Docker Compose does no support the newest version of
nvidia-container-toolkit
yet so we install the older version):$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) $ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - $ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list # install package maintainers version of /etc/docker/daemon.json $ sudo apt-get update && sudo apt-get install -y --no-install-recommends nvidia-docker2
-
Run
sudo systemctl restart docker
. -
Run
sudo usermod -aG docker ubuntu
to add the ubuntu user to the docker group. -
Install Docker Compose as a Docker container.
-
Log out of the machine and back in.
Now you can follow the installation instructions to install BIIGLE on the machine.